
Evidence for self-organized criticality in human
epileptic hippocampus

Gregory A.Worrell,1,2,CA Stephen D. Cranstoun,2 Javier Echauz3 and Brian Litt2

1Department of Neurology,Mayo Clinic, Rochester,MN 55905; 2Department of Neurology and Bioengineering,Hospital of the University of Pennsylvania,
3320 SmithWalk, Suite120, Philadelphia, PA19104; 3Neuropace, Inc, Sunnyvale,CA 94085,USA

CA,1Corresponding Author and Address: worrell.gregory@mayo.edu

Received 23 August 2002; accepted 28 August 2002

Self-organized criticality (SOC) is a property of complex dynamic
systems that evolve to a critical state, capable of producing scale-
free energy £uctuations. A characteristic feature of dynamical sys-
tems exhibiting SOC is the power-law probability distributions
thatdescribe the dynamics of energyrelease.We show experimen-
tal evidence for SOC in the epileptic focus of seven patients with
medication-resistant temporal lobe epilepsy. In the epileptic focus
the probability density of pathological energy £uctuations and the
time between these energy £uctuations scale as (energy)�d and

(time)�g, respectively.Thepower-laws characterizing theprobabil-
ity distributions from these patients are consistent with computer
simulations of integrate-and-¢re oscillator networks that
have been reported recently. These ¢ndings provide insight into
the neuronal dynamics of epileptic hippocampus and suggest a
mechanism for interictal epileptiform £uctuations. The presence
of SOC in human epileptic hippocampus may provide a method
for identifying the network involved in seizure generation.
NeuroReport13:2017^2021�c 2002 LippincottWilliams &Wilkins.
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INTRODUCTION
Epilepsy affects 50 million people worldwide. Twenty-five
percent of these individuals are not controlled by any
available therapy. The majority of these refractory patients
have partial seizures that originate from a focal region of
abnormal brain. The interictal (between seizures) electro-
physiologic signatures of epileptic brain are epileptiform
spikes, sharp waves, and sharp and slow wave complexes
[1]. The neuronal mechanisms underlying these paroxysmal
voltage fluctuations are not well understood, but are
believed to be the macroscopic manifestation of pathologic
collective neuronal firing [2]. Interestingly, the temporal
pattern of energy fluctuations associated with these patho-
logic discharges in the epileptic focus is similar to that
observed in systems exhibiting self-organized criticality
(SOC) [3,4–11]. In this study we demonstrate that epilepti-
form energy fluctuations in human epileptic hippocampus,
and the quiescent time between epileptiform fluctuations,
obey power-law scaling relations, a hallmark of SOC [3,4].
This finding provides insight into the neuronal dynamics of
epileptic human hippocampus, suggesting a mechanism for
the amplitude and temporal patterns of interictal epilepti-
form discharges, and provides an experimental link to
integrate-and-fire oscillator models.

Bak et al. [3] introduced the concept of SOC to describe the
property of some dynamical systems to self-organize to a
critical state from which energy fluctuations of all sizes
occur. The systems lack a characteristic temporal or spatial
scale which allows energy fluctuations of all sizes, scale-free

fluctuations, and leads to power-law probability distribu-
tions, similar to eqns (1) and (2). An example is the
Guttenberg–Richter (colloquially the Richter scale) and
Omori power-laws describing earthquakes [3,4,5,12].

The close relationship between theoretical models of
earthquakes [7,8], which show SOC, and locally coupled
integrate-and-fire oscillator models used to study biological
systems has recently been noted [9,10,13]. In the network
model of coupled integrate-and-fire oscillators [9,10,13] a
continuous function, operating on a timescale much slower
than the threshold oscillator firing, drives individual
oscillators to their threshold level. When an oscillator
reaches threshold it will fire, and depending on the
interaction rules will influence its neighbors. Oscillator
firing can drive neighboring oscillators to threshold firing
that can spread, leading to an avalanche of firing oscillators.
The number of oscillators that fire during a given avalanche
can range from a single oscillator to the entire network.
Depending on the parameters describing the interaction
between oscillators and the driving function, different
network behaviors are observed [13]. For some parameters
the network exhibits a characteristic avalanche size, where
the number of oscillators firing is similar for each event. A
remarkable finding is that for some parameter ranges the
network settles into a system without a characteristic
avalanche size, but with avalanches of all sizes. The lack
of a characteristic avalanche size, or scale, produces
probability densities with power-law relations like eqns (1)
and (2), a hallmark of SOC.
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To prove the presence of SOC [4], the probability density
of avalanche size must be shown to scale with the size of the
network. This is not possible in human studies described
here, but in numerical network models changing the
network size demonstrates the system is critical in analogy
with equilibrium critical phenomena [3,4,11,13].

The energy associated with avalanches of oscillator firing
will be proportional to the number of oscillators involved;
thus a characteristic feature of SOC in a real neuronal
population is that the energy fluctuations will have a power-
law distribution:

PðEÞ � E�� ð1Þ

Here P(E) is the unnormalized probability density of
fluctuations with energy E; P(E)dE is the probability of
fluctuations with energy between E and Eþ dE; and d is a
patient-specific scaling constant. Similarly, the probability
density of consecutive large energy fluctuations separated
by a time Dt should scale as:

Pð�tÞ � �t�� ð2Þ

Where g is a second patient-specific scaling constant. We
provide experimental evidence for SOC in epileptic brain by
verifying the scaling relations in eqns (1) and (2) in human
in vivo intracranial electroencephalogram (iEEG) recordings.

MATERIALS AND METHODS
We analyzed data from seven consecutive patients with
temporal lobe epilepsy who required depth electrode iEEG
monitoring during evaluation for epilepsy surgery (Fig. 1).
Interictal (between seizures) iEEG records were defined as
all records 4 4 h removed from any seizures recorded on
iEEG. The seizure onset zone, i.e. those contacts that
recorded the earliest clear seizure onset on iEEG, was
determined by visual inspection to be located within the
mesial (middle) temporal lobe in each patient. Continuous
iEEG was collected from temporal lobe depth electrodes
using a digital, 64 channel, 12-bit Nicolet BMS-5000 epilepsy

monitoring system. The iEEG was referentially recorded
using a single extracranial reference electrode, band pass
filtered at 0.1–100 Hz and digitized at 200 Hz. To eliminate
common-mode artifacts the analysis was performed using a
bipolar electrode montage, created by subtracting the
signals from adjacent electrode contacts separated by
1.0 cm. We selected for further analysis signals during
wakefulness from electrodes within the seizure onset zone
and a control region on the other side of the brain without
epileptiform discharges.

The voltage difference between two contiguous depth
electrode contacts at discrete time tn is represented as V[n].
A sequence of average energies, oE[j]4, is calculated by
averaging over a 0.25 s window using a 0.045 s window
overlap and expressed as:

oE½j�4 ¼
1

N

XN

i¼1

V2½i� ð3Þ

The sum is over N¼ 50 data points (sampling rate is
200 Hz). Typical waveforms of interest are epileptiform
spikes, sharp waves, and sharp and slow wave complexes
(Fig. 2a), which are generally o 0.2 s duration and should be
adequately represented by averaging over a 0.25 s window.

RESULTS
A typical interictal iEEG recording from the seizure onset
zone from patient 1 is shown in Fig. 2. The uppermost
tracing shows an electrophysiological hallmark of epileptic
hippocampus, the interictal sharp and slow wave complex
[1,14]. The increasingly longer time segments in Fig. 2b–d
demonstrate the self-similar temporal structure of energy
fluctuations in the interictal period.

Prolonged, 1 h duration, interictal recordings from the
seizure onset zone were analyzed and the probability
densities of energy fluctuations were determined. The
probability density of large interictal energy fluctuations
(Fig. 3a) demonstrates power-law scaling behavior, as
described by eqns (1) and (2), over B1.5 energy decades; a
range similar to that seen in many other physical systems
exhibiting SOC [5,11]. Similarly, the probability density for
consecutive large energy fluctuations separated by time Dt
(Fig. 3b) shows power-law scaling behavior consistent with
eqn (2), and shows that large energy fluctuations tend to be
temporally close together. The tendency for large energy
fluctuations to cluster together in time is also suggested by
visual inspection of the records in Fig. 2b–d. The temporal
clustering of large energy events is a characteristic feature of
other complex systems exhibiting SOC [5,6], and is similar
to the Omori law describing the temporal statistics of
earthquakes [12].

In addition to the baseline interictal records, the prob-
ability densities of 10 pre-seizure records (1 h prior to
seizure onset) were also analyzed and demonstrated power-
law scaling behavior over a range of higher energies. The
source of this higher energy in these pre-seizure probability
densities, compared to the interictal energy densities,
appears to be due to complex, longer duration epileptiform
discharges that have recently been described in some
patients prior to the onset of seizures [15]. Pre-seizure
records were not exhaustively analyzed, as this study was

Fig. 1. MRI image showing the placement of an intracranial six contact
depth electrode within the left temporal lobe. Arrows with the labels
LT1, LT2 etc, indicate the six contacts, each separated by1.0 cm.
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not focused on using these techniques to search for a unique
pre-seizure period. In the results presented here, energies of
these longer duration complex discharges were not calcu-
lated separately in order to avoid reliance on subjective
visual inspection to describe the temporal boundaries of
energy events. However, it might be possible to extend the
dynamic range of the power-law scaling, beyond the B1.5
decades found in the interictal period, if the longer duration,
high energy, discharges were considered as individual
energy events.

Table 1 shows the scaling exponents for each patient.
Average exponents were calculated from 5 h of randomly
selected, artifact free, interictal iEEG from each subject. The
exponents were obtained by a least squares fit of the data to
eqns (1) and (2), and linear regression analysis was used to
quantify the quality of the fit. Sites distant from the seizure
onset zone that did not exhibit epileptiform discharges had
lower average energies and a limited range of energy
fluctuations.

It is important to consider alternative explanations for
a power-law distribution of energy fluctuations in our
experimental data. It is known that threshold sampling of
noise can generate a random sequence with approximate
scaling laws, like those in eqns (1) and (2), over a limited
range of values [5,16]. An example is the sequence created
by triggering an event when a zero-mean Gaussian noise
function V(t) is greater than a threshold E0. The probability
density of triggered events with V4E0 and time separation

4 t is given by:

N tð Þ ¼ W E0ð Þ� �=�
� �

t1=2 ð4Þ

where s2, t, and W(V) are the noise variance, correlation
time, and noise probability density, respectively [16].
Similarly, the probability density of triggered events with
an integrated energy greater than some E0 can be shown to
scale as eqn (1) in the limit of E0

2oos2, but with do 1 [5].
While the above examples produce power-law scaling over
a limited range, the exponent values of do 1 and g¼ 0.5 in
these cases are inconsistent with our data, making it
unlikely that our findings in human hippocampus are
spurious. In addition, we performed numerical simulations
using Gaussian noise created with the same mean and
variance as our experimental iEEG recordings. The asso-
ciated probability densities were significantly different than
what was found experimentally, and they did not exhibit
power-law scaling.

DISCUSSION
We investigated the probability distribution of in vivo
pathological energy fluctuations in human epileptic
hippocampus. The observed probability densities are
not characterized by universal scaling exponents, but
by patient specific exponents that describe iEEG epilepti-
form energy fluctuations. The range of scaling exponents
obtained in this study (Table 1) are similar to those reported

Fig. 2. Intracranial depth electrode iEEG recordings from the seizure onset zone of patient 1. (a) The iEEG recording shows the potential di¡erence
between two electrodes, separatedby1.0 cm, within the seizure onset zone.The arrowmarks an epileptiform sharpwave (dark arrow) and after coming
slow wave. (b^d) The self-similar temporal structure of energy £uctuations is shown at four di¡erent time scales.
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in computer simulations, where the exponents characteriz-
ing the energy of avalanches and the time between events
range between 1.95 and 2.45 [3,6,9,13] and 2.05 and
2.3 [3,6,9], respectively. These computer simulations,

however, only report scaling exponents for a single
parameter set, and it is likely that the range of exponents
is wider than reported here [13]. The lack of universal
exponents in these patients is similar to numerical simula-
tions of integrate-and-fire network models, where ranges
of scaling exponents have been found [4,13], depending
upon the driving functions and system parameters. In
fact, as discussed above integrate-and-fire network models
can demonstrate a range of behavior, from SOC to
macroscopic synchronization of the entire neuronal popula-
tion [13].

The probability densities of interictal epileptic energy
fluctuations and the quiescent time between successive
fluctuations exhibit power-law scaling, which provides
evidence for SOC in human epileptic hippocampus. This
suggests that interictal epileptiform fluctuations might be
usefully viewed as avalanches of neuronal firing analogous
to large-scale events seen in other complex dynamic
systems. These results demonstrate that the epileptiform
energy fluctuations seen in epileptic human hippocampus
may be related to bursts of neuronal synchronization that
have been reported in integrate-and-fire network models
[9,10,13]. We speculate that interictal epileptiform dis-
charges are a mechanism for energy release within epileptic
brain, and that these events may even provide a physiolo-
gical mechanism for preventing seizures. The finding that
SOC may be specific to the seizure onset zone might provide
a method for identifying the network involved in seizure
generation. The finding that energy fluctuations in some
pre-seizure records (1 h before seizure onset) exhibited
different scaling behavior needs to be investigated further,
but this may suggest a pre-seizure period that could
be differentiated from the interictal period, and perhaps
used to trigger intervention, such as electrical stimulation in
the seizure-onset zone during critical periods, to prevent
seizures.

CONCLUSION
In the epileptic focus the probability density of patho-
logical energy fluctuations and the time between large
energy fluctuations show power-law scaling relations.
The experimental results are similar to integrate-and-
fire oscillator network models where power-law scaling
of energy fluctuations have been proven to result from
SOC. While power-law scaling for the temporal dynamics
of energy fluctuations does not provide unequivocal
proof that SOC is present in epileptic hippocampus, the

Fig. 3. (a) The normalized probability density of energy £uctuations oc-
curring during the interictal period.The solid straight line yields a scaling
exponent of d¼1.9. (b). The normalized interictal probability density of
the quiescent period between consecutive large energy £uctuations.The
solid straight line yields a scaling exponent of g¼ 2.2.

Table1. Seizure onset zone and scaling exponents for seven patients with temporal lobe epilepsy.

Patient Seizure onset zone d g

mean7 s.e. 95% CI R2 mean7 s.e. 95% CI R2

1 Left hippocampus 2.17 0.1 1.8^2.4 0.92 1.97 0.2 1.5^2.4 0.93
2 Right hippocampus 4.17 0.2 3.7^4.4 0.94 2.67 0.2 2.2^3.1 0.96
3 Right hippocampus 1.77 0.1 1.6^1.8 0.93 3.57 0.4 2.5^4.5 0.94
4 Left hippocampus 2.77 0.1 2.5^3.0 0.95 2.57 0.2 2.0^2.9 0.93
5 Left hippocampus 2.87 0.1 2.5^3.1 0.96 2.97 0.2 2.4^3.4 0.94
6 Left hippocampus 2.57 0.1 2.2^2.8 0.95 2.27 0.2 1.7^2.6 0.85
7 Left hippocampus 3.27 0.1 2.9^3.4 0.98 2.07 0.2 1.5^2.5 0.87

Po 0.0001; R2¼ coe⁄cient of determination (R2¼1is perfect linearity).
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results are very suggestive and may have therapeutic
implications.
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